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Abstract

High-mobility group box-1 (HMGB1) is an architectural chro-
mosomal protein with various roles depending on its cellular 
localization. Extracellular HMGB1 functions as a prototypical 
damage-associated molecular pattern that triggers inflam-
mation and adaptive immune responses, mediated by spe-
cific cell surface receptors, including receptors for advanced 
glycation end products and toll-like receptors. Post-trans-
lational modifications of HMGB1 significantly impact vari-
ous cellular processes that contribute to the pathogenesis 
of liver diseases. Recent studies have highlighted the close 
relationship between HMGB1 and the pathogenesis of acute 
liver injuries, including acetaminophen-induced liver injury, 
hepatic ischemia-reperfusion injury, and acute liver failure. 
In chronic liver diseases, HMGB1 plays a role in nonalcoholic 
fatty liver disease, alcohol-associated liver disease, liver fi-
brosis, and hepatocellular carcinoma. Targeting HMGB1 as 
a therapeutic approach, either by inhibiting its release or 
blocking its extracellular function, is a promising strategy 
for treating liver diseases. This review aimed to summarize 
the available evidence on HMGB1’s role in liver disease, fo-
cusing on its multifaceted signaling pathways, impact on 
disease progression, and the translation of these findings 
into clinical interventions.
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Introduction
Acute liver injury (ALI) is a critical health concern with high 
morbidity and mortality, commonly triggered by bacterial en-
dotoxin/lipopolysaccharide (LPS) and drug overdoses, such 

as acetaminophen (APAP).1,2 Clinical treatment options for 
APAP-induced liver injury are currently limited, and the con-
dition can rapidly progress to acute liver failure (ALF).3 Non-
alcoholic fatty liver disease (NAFLD) and alcohol-associated 
liver disease (ALD) are primary contributors to the preva-
lence of chronic liver disease (CLD) in Western countries. The 
global incidence of these conditions has steadily increased 
in recent years, largely due to shifts in lifestyle and dietary 
patterns.4,5 CLD can lead to critical complications, such as 
cirrhosis and hepatocellular carcinoma (HCC), which carry a 
poor prognosis in advanced stages. Consequently, identifying 
biological markers that facilitate early diagnosis of ALI and 
CLD is crucial.

High-mobility group box-1 (HMGB1), the most abundant 
non-histone nuclear protein, plays a major role in regulat-
ing DNA structure by binding to and bending DNA through 
the minor groove.6 Recent studies have highlighted a no-
table increase in circulating serum HMGB1 levels in certain 
CLDs and ALI, indicating a close association between HMGB1 
and these conditions.7 Therefore, targeted interventions fo-
cused on HMGB1, such as inhibiting its synthesis and release 
or disrupting its signaling pathways through its receptors, 
hold promise for mitigating disease progression.8 Moreover, 
emerging evidence suggests that HMGB1 is a mediator of liv-
er diseases and a valuable biomarker for diagnosis and prog-
nosis.9–11 Compared to previous studies, this review provides 
a more comprehensive overview of the key types of HMGB1 
post-translational modifications (PTMs) in liver disease, with 
a particular focus on the novel modification of lactylation. 
Furthermore, it updates recent findings on new molecular 
mechanisms and therapeutic targets associated with HMGB1 
in various liver conditions, offering more cutting-edge in-
sights. Thus, this review synthesizes current literature to 
elucidate the multifaceted roles and signaling pathways of 
HMGB1 in CLDs and ALI.

HMGB1
HMGB1 has multiple biological functions depending on its 
location. It is primarily translocated into the nucleus for 
architectural functions, including cell cycle regulation, cell 
death, and DNA replication/remodeling/repair.12 Extracel-
lular HMGB1 functions as a prototypical damage-associated 
molecular pattern (DAMP) that triggers inflammation and 
adaptive immune responses.13 Receptors for advanced gly-
cation end products (RAGE) and toll-like receptor (TLR) 4 
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are among the most prevalent and well-studied extracellular 
HMGB1 receptors.14

HMGB1 structure
HMGB1 expression is ubiquitous and conserved in higher eu-
karyotic species.15 HMGB1 contains 215 residues organized 
into three domains: two DNA-binding regions [an A box (aa 
9–79) and a B box (aa 95–163)], a C-terminus, and an N-
terminus (Fig. 1).16 The N-terminus of HMGB1 contains many 
positively charged lysine residues, while the C-terminus is 
rich in aspartate and glutamate.17 The A box reportedly has 
anti-inflammatory activity, whereas the B box exhibits pro-
inflammatory effects as a specialized antagonist. HMGB1’s 
steady nuclear localization is mediated by two nuclear lo-
calization signals (NLSs), NLS1 (aa 28–44) and NLS2 (aa 
179–185).18 These NLSs contain specific sites for PTMs, such 
as oxidation (aa 23, aa 45, aa 105), acetylation (aa 28–30, 
aa 180, aa 181–185), and phosphorylation (aa 35), in liver 
disease. In subsequent sections, we will discuss extensively 
the impact of HMGB1 PTMs on its function and its crucial 
role in liver disease. Additionally, HMGB1 has two essential 
regions for receptor binding, aa 89–108 (TLR4) and aa 150–
183 (RAGE).19

HMGB1 functions
HMGB1 performs various functions depending on its cellu-
lar localization. Within the nucleus, HMGB1 acts as a DNA 
chaperone, preserving chromosomal structure and function 
by maintaining nucleosome integrity, transcription, and DNA 
repair.20 HMGB1 is passively released by necrotic cells or ac-
tively secreted by immune cells, making it a crucial mediator 
of inflammation, cell migration, and cell proliferation. Extra-
cellular HMGB1 uniquely functions as a prototypical DAMP, 
acting as a standard alarm.21 It triggers innate immune re-
sponses independently or through interaction with cytokines 
and other molecules by binding to various receptors.22 Hence, 
HMGB1 is frequently implicated in various pathological con-
ditions, including sepsis, arthritis, cancer, and neurodegen-
erative diseases. Additionally, HMGB1 has been involved in 
tissue regeneration. Extracellular HMGB1 can stimulate the 
proliferation and migration of stem cells, contributing to tis-
sue repair and regeneration.23,24 Moreover, HMGB1 plays a 
crucial role in regulating autophagy through various intracel-
lular and extracellular signaling pathways.25,26 A comprehen-
sive understanding of HMGB1’s multifaceted roles is essen-
tial, as dysregulation of its expression or function can cause 
pathological effects.

HMGB1 receptors
HMGB1 modulates inflammatory signaling cascades by bind-
ing to various receptors, including RAGE, TLR2/4/9, CXCL12/
CXCR4, Mac-1, syndecan-1, and differentiation clusters.27–29 
We focus on RAGE and TLR4 due to their significance in liver 
disease.30

TLR4 is a key receptor involved in HMGB1 recognition 
and is released during liver injury and inflammation. It is 
expressed in various liver cells, including hepatocytes, 
Kupffer cells (KCs), endothelial cells, and hepatic stellate 
cells (HSCs).31 TLR4 activation by extracellular HMGB1 ini-
tiates downstream signaling pathways, notably the nuclear 
factor-kappa B (NF-κB) pathway, which induces the produc-
tion of pro-inflammatory cytokines and chemokines in hepat-
ocytes.32 This cascade amplifies the immune response in the 
liver and contributes to tissue damage and inflammation. The 
HMGB1/TLR4 signaling pathway has been implicated in the 
pathogenesis of various liver diseases, including NAFLD, ALD, 
viral hepatitis, and liver fibrosis.33–35 The activation of this in-
flammatory signaling pathway is closely associated with liver 
disease progression. Therefore, targeting TLR4 and its asso-
ciated signaling pathways in HMGB1-mediated liver disease 
has emerged as a promising therapeutic strategy.

RAGE is a transmembrane receptor belonging to the im-
munoglobulin superfamily. The interaction between HMGB1 
and RAGE triggers signaling cascades that initiate inflamma-
tion, tissue regeneration, and immune responses.36 Recent 
studies have provided valuable insights into the role of RAGE 
in liver disease.37–39 It is expressed in hepatocytes, HSCs, 
liver sinusoidal endothelial cells (LSECs), KCs, and oval cells. 
Liver tissues collected from patients with ALD, NAFLD, and 
liver fibrosis exhibit elevated RAGE expression. Increased 
RAGE levels have been associated with the severity and pro-
gression of these diseases, suggesting a potential role for 
RAGE in liver pathology.40,41 RAGE activation triggers down-
stream signaling cascades, including mitogen-activated pro-
tein kinases (MAPKs) and NF-κB pathways in hepatocytes,42 
promoting hepatic inflammation. HMGB1-RAGE interactions 
exacerbate immune cell recruitment to the liver, amplifying 
inflammatory responses. Additionally, the HMGB1-RAGE axis 
is crucial in liver fibrosis. The binding of RAGE to HMGB1 
activates HSCs, which are vital effector cells in liver fibrosis. 
HSC activation induces the production of extracellular ma-
trix proteins, causing fibrotic scar formation and tissue re-
modeling.37 Inhibition of the HMGB1-RAGE axis has shown 
promise for attenuating liver fibrosis in experimental models. 
RAGE is a crucial receptor for HMGB1, which regulates HCC 

Fig. 1.  Structure of HMGB1 protein. HMGB1 consists of three domains: two DNA-binding domains (A box and B box) and an acidic tail. The binding sites for TLR4 
and RAGE on HMGB1 are specifically located at positions aa 89–108 and 150–183, respectively. NLSs serve as the primary sites for HMGB1 post-translational modifica-
tions. Cysteines can be oxidized at C23, C45, and C106. Lysines can undergo acetylation at K28-30, K180, and K181-185. A serine is subject to phosphorylation at 
S35. However, the specific modification sites for lactylation remain unclear. HMGB1, high-mobility group box-1; NLSs, nuclear localization signals; RAGE, receptor for 
advanced glycation end products; TLR, toll-like receptor; Ox, oxidation; P, phosphorylation; Ac, acetylation; Lac, lactylation.
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proliferation and metastasis.39 Conversely, modulation of the 
HMGB1-RAGE axis has been associated with enhanced liver 
regeneration and repair, emphasizing the dynamic role of this 
interaction in liver homeostasis.

PTMs of HMGB1 in liver disease
PTMs are crucial regulatory mechanisms for cellular pro-
teins, serving various biological functions and modifying 
the charge state, hydrophobicity, conformation, and stabil-
ity of proteins.43,44 HMGB1, in particular, undergoes various 
PTMs.45–51 Specific HMGB1 modifications significantly impact 
various cellular processes, including DNA stability, transcrip-
tional regulation, protein localization, cell motility, and pro-
inflammatory or pro-fibrogenic effects.52–54 Moreover, sever-
al crucial HMGB1 PTMs, such as oxidation, phosphorylation, 
and acetylation, have been identified as contributors to the 
pathogenesis of liver diseases. Notably, lactylation has been 
investigated as a mediator of HMGB1 secretion from hepato-
cytes following hepatic ischemia-reperfusion injury (HIRI).55 
The following section focuses on the vital modifications in-
volved in regulating liver diseases and the latest research 
advancements (Table 1).55–68

Acetylation of HMGB1 in liver disease
The acetylation of specific lysine residues in HMGB1 has 
been associated with its ability to modulate inflammatory 
responses, immune functions, and apoptosis.69 Multiple ly-
sine acetylation sites have been identified in NLS1 and NLS2. 
HMGB1 acetylation reportedly contributes to liver inflamma-
tion and injury in ALD by affecting its subcellular localization, 
DNA-binding activity, and interactions with other proteins.70 
HMGB1 acetylation has been shown to facilitate its transloca-
tion from the nucleus to the cytoplasm in cell and mouse mod-
els of alcohol-induced liver injury.56 This pro-inflammatory 
effect was suppressed following treatment with resveratrol, 
a potent agonist of sirtuin 1 (SIRT1), by inhibiting HMGB1 
acetylation and translocation. Moreover, HMGB1 acetylation 
is crucial in the pathogenesis of sepsis-associated liver injury. 
LPS induces HMGB1 expression in KCs and regulates its acet-

ylation, influencing its intracellular translocation. Tian et al. 
found that sphingosine kinase 1 (SphK1) inhibition markedly 
improves sepsis-associated liver injury by inhibiting HMGB1 
expression, intracellular translocation, and acetylation.57 Ad-
ditionally, HMGB1 acetylation exacerbates oxygen-glucose 
deprivation/reperfusion injury by promoting its translocation 
and release, leading to increased pro-inflammatory cytokine 
levels, oxidative stress, and hepatocellular apoptosis.58

Phosphorylation of HMGB1 in liver disease
The phosphorylation of serine residues within the NLSs of 
HMGB1 regulates its nucleocytoplasmic translocation, which 
is a critical step in its release into the extracellular space.59 
Zhao et al. found that HMGB1 phosphorylation promotes its 
release from the nucleus to the cytoplasm, mediating lipid 
degeneration in hepatocytes and facilitating the progression 
of ALD.71 Calcium dysregulation during liver injury causes 
an elevated intracellular calcium load in hepatocytes.72 The 
translocation and release of HMGB1 are reportedly regulated 
by the calcium/calcium-dependent kinase signaling path-
way, which serves as an upstream signaling mechanism for 
HMGB1 phosphorylation. Activation of calcium-dependent 
kinases, such as PKCα and calmodulin-dependent protein ki-
nase (CaMK) IV, promotes HMGB1 phosphorylation in H2O2-
induced liver injury, facilitating its cytoplasmic translocation, 
subsequent release, and immuno-regulatory effect.60 Simi-
larly, Li et al. found that HMGB1 phosphorylation mediated 
by protein kinase C or calcium/CaMKII was associated with 
its release from hepatocytes in response to LPS stimula-
tion.61 However, the specific phosphorylation sites within 
HMGB1-NLS remain unclear.

Oxidation of HMGB1 in liver disease
HMGB1 oxidation primarily affects cysteine, lysine, and ty-
rosine residues, leading to their modification by reactive 
oxygen species (ROS), such as superoxide anions, hydro-
gen peroxide, and other oxidants, such as peroxynitrite.48 
HMGB1 oxidation can induce structural alterations that in-
fluence its protein-protein interactions, DNA-binding capac-

Table 1.  Functions and therapeutic strategies of HMGB1 PTMs in various liver disease

PTMs Liver 
disease Function Therapeutic strategies

Acetylation ALD
ALF
HIRI

Regulates the 
nucleus-cytoplasm 
shuttling of HMGB1

SIRT1 alleviates HMGB1 acetylation and 
translocation, ameliorating ALD56

SphK1 inhibition diminishes HMGB1 intracellular translocation in ALF57

Pachymic acid alleviates hepatic injury via SIRT1/HMGB1 signal  
pathway58

Phospho-
rylation

ALD
ALI
Sepsis

Promotes HMGB1 
secretion to cytoplasm

58-F or caspase-11/GsdmD inhibition protects against liver injury59–61

Oxidation Liver fibrosis
Hepatitis
HCC

Induces translocation 
of HMGB1 from 
the nucleus to 
the cytoplasm

Nilotinib can improve liver fibrosis via RAGE/HMGB1 axis62

HBx induces HMGB1 oxidation and NLRP3 activation, mediating liver 
inflammation63

HMGB1 oxidation modulates the proliferation, migration, and  
metastasis abilities of tumor cells in HCC64–67

Lactylation HIRI
Sepsis

Increases HMGB1 
cytoplasmic accumu-
lation in hepatocytes 
or macrophages

HSPA12A reduces macrophage inflammation by inhibiting lactate 
production, decreasing HMGB1 lactylation and hepatocyte  
exosome secretion55

Inhibiting intracellular lactate or blocking lactate signaling reduces  
HMGB1 lactylation, improving polymicrobial sepsis68

ALD, alcohol-associated liver disease; ALF, acute liver failure; HCC, hepatocellular carcinoma; HMGB1, high-mobility group box-1; HIRI, hepatic ischemia-reperfusion 
injury; HSPA12A, heat shock protein A12A; PTMs, post-translational modifications; SIRT1, sirtuin1; RAGE, receptor for advanced glycation end products; SphK1, 
sphingosine kinase 1.
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ity, and overall functionality in diverse biological processes. 
Investigations into HMGB1 oxidation have provided signifi-
cant insights into its involvement in several diseases, such as 
liver fibrosis, HCC, and hepatitis. Oxidative stress is crucial in 
HSC activation during liver injury progression.73 HMGB1 oxi-
dation reportedly regulates liver fibrosis by activating HSCs 
and promoting collagen synthesis via RAGE/HMGB1/TGF-β 
and oxidative stress pathways.62 Moreover, hepatitis B virus 
(HBV)-encoded X protein triggers HMGB1 oxidation and ex-
tracellular release in H2O2-stimulated HL7702 cells. The oxi-
dized HMGB1 activates the NLRP3 inflammasome, inducing 
liver tissue inflammation and hepatocyte pyroptosis.63 Thus, 
oxidized HMGB1 acts as a signaling molecule to regulate in-
flammatory reactions in HBV-infected tissues. Recent stud-
ies have shown that HMGB1 oxidation significantly influences 
HCC by modulating the proliferation and migration of tumor 
cells.64 Notably, HMGB1-induced metastasis of tumor cells is 
considered an inflammatory response triggered by hypoxia 
stress through the RAGE/NF-κB and TLR4/caspase-1 signal-
ing pathways.75,66 Jing et al. proposed a novel mechanism 
by which HMGB1 oxidation promotes HCC proliferation and 
metastasis. HMGB1 upregulates the expression of the mito-
chondrial transport protein RHOT1 and tunneling nanotube-
related protein RAC1 in hypoxic environments, promoting 
mitochondrial transfer and infiltration of tumor cells.67 This 
novel mechanism provides a new perspective for exploring 
therapeutic strategies for HCC.

Lactylation of HMGB1 in liver disease
Lactylation is a novel epigenetic modification, heralding a 
new era for the comprehensive investigation of lactate me-
tabolism.74,75 Lactylation modifications alter protein struc-
ture and function, influencing protein folding, stability, and 
hydrophobicity. Consequently, they affect crucial biological 
processes, such as cellular signal transduction, cell cycle 
regulation, and metabolic control.76 Multiple studies have 
demonstrated the essential contribution of protein lactylation 
in inflammation, cancer, and neuropsychiatric disorders.77,78 
Notably, lactylation modification is emerging as a crucial fac-
tor in liver disease and is closely associated with the develop-
ment and progression of various conditions, such as NAFLD, 
fibrosis, and HCC.79–81 Yang et al. revealed that macrophages 
can take up lactate through monocarboxylate transporters 
and facilitate HMGB1 lactylation via the p300/CBP pathway. 
Inhibiting intracellular lactate levels or blocking lactate sign-
aling pathways can decrease the lactylation level of HMGB1 
in exosomes, improving polymicrobial sepsis.68 Furthermore, 
elevated levels of HMGB1 lactylation in hepatocytes during 
HIRI were closely associated with macrophage chemotaxis 
and inflammatory cytokine activation. However, hepatocyte 
heat shock protein A12A (HSPA12A) mitigates these ef-
fects by inhibiting lactate production from glycolysis, reduc-
ing HMGB1 lactylation and hepatocyte exosome secretion.55 
The Warburg effect is a crucial event in HCC development, 
where tumor tissues utilize the abundant lactate produced 
through aerobic glycolysis as a lactylation substrate.82 The 
lactylation of histones and non-histones has garnered wide-
spread attention, serving as a cornerstone of the tumor mi-
croenvironment (TME) and participating in HCC progression 
by regulating gene expression and cellular metabolism.83–85 
Unfortunately, there are currently no relevant publications 
on the involvement of HMGB1 in the pathogenesis of HCC. 
The author proposes that, influenced by the Warburg effect, 
HMGB1—functioning as a classic DAMP—could be a valua-
ble target for elucidating the development and treatment of 
HCC through its lactylation modifications. Therefore, lactyla-
tion serves as a bridge between epigenetic and metabolic 

reprogramming in cancer cells. These findings suggest that 
HMGB1 lactylation is crucial in modulating inflammatory re-
sponses in liver diseases. However, studies on HMGB1 lacty-
lation are currently limited to polymicrobial sepsis and HIRI. 
Interestingly, Gao et al. recently confirmed that mitochondri-
al pyruvate carrier 1 regulates fatty acid synthase lactylation 
at the K673 site and plays a role in treating NAFLD.80 This is a 
valuable finding, providing a robust foundation for investigat-
ing the role of HMGB1 lactylation in NAFLD. Further in-depth 
investigations are urgently needed to explore the molecular 
mechanisms, including acetoacetyl coenzyme A-related writ-
ers and erasers, modification sites, and reaction kinetics, to 
develop new therapeutic interventions for liver disease.

HMGB1 in acute liver disease

HMGB1 in APAP-induced ALI
Acetaminophen-induced acute liver injury (AILI) has emerged 
as a significant public health concern, ranking among the top 
causes of drug-induced liver injury in developed nations.86,87 
APAP overdose triggers an inflammatory response and oxi-
dative stress in hepatocytes at the onset of AILI. HMGB1, a 
DAMP associated with AILI, is passively released from ne-
crotic hepatocytes, leading to elevated levels of HMGB1 in 
the systemic circulation.88–90 Clinical studies have indicated 
that HMGB1 is a more sensitive biomarker than ALT in pre-
dicting the development of liver injury in patients with AILI. 
Additionally, it is vital in the stratification of early liver dam-
age risk among AILI patients, enabling the customization of 
treatment strategies in clinical practice.90 Pirnie et al. utilized 
high-resolution mass spectrometry to identify oxidized modi-
fications of cysteine residues (Cys-23, Cys-45, and Cys-106) 
in HMGB1, further elucidating the HMGB1 phenotype secret-
ed by hepatocytes in AILI. These findings identify HMGB1 as 
a potential early biomarker of liver toxicity following APAP 
overdose.91

HMGB1 enhances the immune response by activating mac-
rophages and recruiting neutrophils during immune-mediat-
ed liver injury. This results in the release of excess cytotoxic 
ROS and proteases, exacerbating liver damage.92 Extracel-
lular HMGB1 binds to the RAGE receptor on the surface of 
neutrophils, selectively inducing their infiltration into necrotic 
sites, though it does not affect liver macrophage levels.93 
Additionally, HMGB1 can activate macrophages via the TLR4 
signaling pathway, promoting the secretion of pro-inflamma-
tory mediators, such as interleukin (IL)-23 and IL-17, which 
induce neutrophil migration and exacerbate liver damage.94 
HMGB1 also plays a crucial role in activating the macrophage 
NLRP3 inflammasome during AILI.1 Activated NLRP3 inflam-
masomes mediate neutrophil infiltration and hepatocyte 
apoptosis by inducing Caspase-1 activation and upregulat-
ing IL-1β expression.95 In the development of AILI, HMGB1 
interacts with the TLR4 receptor and triggers macrophage 
activation through CD36, mediating Erk and Akt signaling 
and upregulating IL-1β and IL-6 expression. However, further 
investigation is needed to understand how HMGB1 mediates 
the function of CD36.96 These studies substantiated the sig-
nificance of HMGB1 in the innate immune modulation of AILI, 
facilitating crosstalk between hepatocytes and neutrophils. 
According to reports, extracellular HMGB1 can stimulate im-
mune cells and trigger the necrosis of adjacent liver cells via 
the TLR4/TRIF/RIPK3 signaling pathway, accelerating liver 
cell necrosis.97 Liu et al. proposed a mechanism in which 
APAP-induced activation of Caspase-1 in hepatocytes leads 
to neutrophil extracellular trap generation and subsequent 
release of pro-inflammatory cytokines. Notably, the depletion 
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or inhibition of neutrophil extracellular traps in neutrophils 
reduces HMGB1 levels and prevents hepatocyte necrosis.98

N-acetylcysteine is currently the most effective treatment 
for APAP-induced liver damage; however, its therapeutic win-
dow is limited. Consequently, alternative therapies for treat-
ing AILI are required.99 Treatment with a partially humanized 
anti-HMGB1 monoclonal antibody has shown higher efficacy 
and a broader therapeutic window in AILI compared to N-
acetylcysteine.100 Moreover, HMGB1-neutralizing antibodies 
have been shown to effectively decrease serum HMGB1 lev-
els and bacterial translocation.101 Additionally, sesamin ex-
hibits a protective effect against AILI by mitigating hepatic 
oxidative stress and inflammatory responses through the in-
hibition of the HMGB1/TLR4/NF-κB signaling pathway, lead-
ing to decreased hepatocyte apoptosis levels.102 Therefore, 
HMGB1 may serve as a pivotal therapeutic target for pre-
venting APAP overdose-induced liver damage.

HMGB1 in HIRI
HIRI is a common complication of hepatic resection and liv-
er transplantation.103 The pathological progression of HIRI 
involves two interconnected phases: the onset of localized 
ischemia leading to hepatocyte injury, and the subsequent 
release of DAMPs, which triggers immune cell activation and 
initiates an inflammatory cascade that exacerbates liver dam-

age.104,105 HMGB1 serves as a crucial alarm molecule during 
the early stages of HIRI.106 Numerous preclinical and clinical 
studies have confirmed that inhibiting HMGB1 release can 
effectively mitigate liver injury.107,108 The release of serum 
HMGB1 after HIRI primarily depends on TLR4 activation.109 
TLR4 can specifically identify hepatocytes and induce HMGB1 
release by activating the phosphorylation of the c-Jun N-ter-
minal kinase and p38 signaling pathways. Therefore, hepato-
cytes are the primary contributors to the circulatory release 
of HMGB1 during HIRI.110,111 Du et al. identified a novel reg-
ulatory mechanism for HMGB1 secretion by hepatocytes.55 
HMGB1 lactylation promotes its extracellular translocation 
from the nucleus, orchestrating macrophage chemotaxis and 
inflammatory activation. HSPA12A exerts strong hepatopro-
tective effects by inhibiting lactate production through gly-
colysis, reducing HMGB1 lactylation and secretion (Fig. 2). 
This study establishes a strong link between lactylation and 
HMGB1 secretion, highlighting its potential as a future thera-
peutic target for HIRI.

Notably, in early-stage HIRI, the activation of TLR4 on KCs 
triggers an innate immune response before neutrophil re-
cruitment from the peripheral blood to the injured liver. The 
HMGB1/TLR4/NF-κB signaling pathway plays a critical role 
in the inflammatory cascade, leading to secondary immune 
injury following hepatic hypoxic.112 Recent studies have fo-

Fig. 2.  The mechanism of HMGB1 release and its pathological impact in HIRI. HMGB1 lactylation promotes its extracellular translocation from the nucleus. 
HSPA12A can inhibit lactate production from glycolysis, thereby reducing HMGB1 lactylation and secretion. Extracellular HMGB1 binds to specific receptors on KCs, 
initiating an innate immune response. Moreover, HMGB1 specifically targets LSECs, leading to the nuclear translocation of IRF1 and CXCL1, which triggers neutrophil 
recruitment. ↑, increase; ↓, decrease; HMGB1, high-mobility group box-1; HIRI, hepatic ischemia-reperfusion injury; HSPA12A, heat shock protein A12A; pJNK, phos-
phorylation of c-Jun N-terminal kinase; LSECs, liver sinusoidal endothelial cells; NE, neutrophils; RAGE, receptor for advanced glycation end products; ROS, reactive 
oxygen species; TLR, toll-like receptor.
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cused on this signaling pathway and investigated the pro-
tective effects of various compounds, including drugs,113,114 
γ-oryzanol,115 bioactive peptides (Ac2-26),116 and TLR4 an-
tagonists (eritoran),117 which possess anti-inflammatory, an-
tioxidant, and anti-apoptotic properties in HIRI. Additionally, 
RAGE is involved in HMGB1-mediated sterile inflammatory 
cascades.118

HMGB1 is a crucial mediator between hepatocytes and 
other liver cells, influencing the immune microenvironment 
and contributing to HIRI. LSECs play vital protective roles 
by maintaining vascular homeostasis, controlling inflamma-
tion, regulating vascular tone, and facilitating toxin clear-
ance.119 (Fig. 2) Upon recognition by TLR3/TLR4, extracel-
lular HMGB1 specifically targets LSECs, leading to the nuclear 
translocation of IRF1 and subsequent transcription of CXCL1. 
This molecular cascade triggers neutrophil chemotaxis and 
accelerates the senescence-associated secretory phenotype 
in LSECs, further disrupting the liver sinusoid-like immune 
microenvironment. However, acteoside has shown protec-
tive effects against HIRI by targeting the HMGB1-TLR3/4-
IRF1 signaling pathway and reversing LSEC senescence.120 
Tanemura et al. demonstrated that dabigatran enhances the 
expression of endogenous thrombomodulin in LSECs, reduc-
ing excessive serum HMGB1 levels, alleviating inflammation 
and cell apoptosis, preserving vascular integrity, and mitigat-
ing ischemia/reperfusion liver injury.121

HMGB1 in ALF
ALF is a prevalent and critical clinical condition stemming 
from various factors, including APAP toxicity, viral and au-
toimmune hepatitis, hepatic ischemia, drug-induced liver in-
jury, and the use of herbal supplements. During the initial 
stage of ALF, the predominant pathogenic processes typically 
involve widespread hepatocyte necrosis and apoptosis within 
the liver tissue.122 The release and activation of HMGB1 are 
crucial in the pro-inflammatory network that characterizes 
the pathophysiology of ALF.123,124 Dynamic network analyses 
have revealed that serum HMGB1 expression is significantly 
higher than other inflammatory mediators in pediatric pa-
tients with ALF, suggesting that HMGB1 can serve as a criti-
cal predictive indicator for survival outcomes in affected chil-
dren.11 Furthermore, clinical cohort studies have confirmed 
that serum HMGB1 is an early and reliable biomarker for 
predicting acute kidney injury in patients with HBV-related 
acute-on-chronic liver failure, which is closely associated 
with poor prognosis.125

Hepatocyte death is recognized as a momentous event 
and a significant contributor to the progression of ALF. Nota-
bly, HMGB1 is significant in mediating various forms of cell 
death following immune imbalance in ALF.126 For example, 
the tumor necrosis factor (TNF)-α/HMGB1 signaling pathway 
plays a pivotal role in triggering hepatocyte necroptosis in 
LPS/D-galactosamine-induced ALF. Treatment with TNF-α 
inhibitors (CC-5013) or glycyrrhizin can effectively inhibit 
HMGB1 release, ameliorating hepatocyte necroptosis and 
liver tissue damage.127 Similarly, Wang et al. discovered that 
macrophages actively release extracellular vesicles (EVs) 
loaded with HMGB1, which selectively target hepatocytes. 
Through the HMGB1/RAGE signaling pathway, HMGB1 induc-
es NLRP3 inflammasome activation, leading to hepatocyte 
necroptosis.128 Furthermore, the levels of HMGB1-containing 
EVs are closely correlated with the degree of liver tissue inju-
ry. This highlights the significance of HMGB1-containing EVs 
as mediators of the communication between macrophages 
and hepatocytes, offering a promising strategy for targeted 
therapeutic interventions. Moreover, HMGB1 is crucial in me-
diating ferroptosis in ALF. The HMGB1 inhibitor glycyrrhizin 

has demonstrated a notable anti-ferroptotic effect in ALF by 
effectively decreasing Fe2+ and ROS levels while increasing 
glutathione levels in liver tissue.129 However, the precise mo-
lecular mechanisms underlying HMGB1-mediated ferroptosis 
remain unclear and warrant further investigation.

Studies have shown that inhibiting HMGB1 activity or re-
lease can effectively mitigate the progression of ALF. The 
HMGB1-A box effectively suppresses the inflammatory ac-
tivity of HMGB1 through competitive binding in LPS/D-Gal-
induced ALF. The HMGB1-A box inhibits the TLR4/NF-κB 
signaling pathway, thereby reducing hepatocyte apoptosis 
and pro-inflammatory cytokine levels.124 Additionally, the 
anti-inflammatory agent heparan sulfate selectively binds to 
HMGB1, targeting the HMGB1/RAGE axis and demonstrat-
ing effective hepatoprotective effects in APAP-induced ALF.130 
Furthermore, histone deacetyltransferase 4 (hereinafter re-
ferred to as HDAC4) is a vital regulator involved in the acet-
ylation and nucleocytoplasmic shuttling of HMGB1. Tian et 
al. demonstrated that the SphK1/CaMKII-δ pathway serves 
as an upstream regulator of HDAC4 phosphorylation. Thus, 
SphK1 inhibition significantly reduces intracellular HMGB1 
release, providing a potential approach for treating sepsis-
related liver injury.57

HMGB1 in CLD

HMGB1 in NAFLD
The NAFLD incidence has risen significantly, transforming it 
into a global public health concern.131 As the condition pro-
gresses, approximately 30% of patients with NAFLD develop 
an inflammatory state in the liver known as nonalcoholic 
steatohepatitis (NASH).132 HMGB1 is an early mediator in 
the progression of NASH and is implicated in the pro-inflam-
matory microenvironment created by lipotoxicity.33 Two clini-
cal investigations were conducted to further investigate the 
potential role of HMGB1 as an early diagnostic biomarker of 
NAFLD. However, findings regarding the association between 
HMGB1 levels and the degree of liver fibrosis are inconclu-
sive. One study reported a robust correlation between se-
rum HMGB1 levels and liver fibrosis in pediatric patients with 
NAFLD.7 Conversely, another study revealed no significant 
relationship between HMGB1 levels and liver inflammation 
in either pediatric or adult patients with NAFLD.133 This dis-
crepancy may be owing to the varied degrees of liver fibrosis 
among these patients. Additionally, no direct correlation be-
tween peripheral HMGB1 levels and the degree of liver tis-
sue fibrosis has been established, highlighting the need for 
further research in this area. Sarcopenia is a severe condition 
common to various CLDs,134,135 and timely identification and 
precise evaluation are essential. Recent studies have shown 
that sarcopenia is closely associated with NAFLD and serves 
as an independent risk factor for the progression of the dis-
ease.136 Notably, studies have confirmed that HMGB1 plays 
a vital role in the pathogenesis of sarcopenia.137,138 HMGB1 
promotes skeletal muscle atrophy through an IL-18-depend-
ent mechanism.139 The elevation of IL-18 production induced 
by HMGB1 is mediated by the RAGE/p85/Akt/mTOR/c-Jun 
signaling pathway, indicating that the HMGB1/IL-18 pathway 
is a promising target for treating sarcopenia.

HMGB1 plays a dual role in the pathogenesis of NAFLD, 
potentially facilitating the progression of NASH or amelio-
rating hepatic lipotoxic injury, depending on its precise cel-
lular localization. The upregulation of HMGB1 expression in 
hepatocytes is regulated by the JNK1/2-ATF2 axis and the 
miR-200 family in response to lipotoxic injury.140 Extracel-
lular HMGB1 initiates the TLR4/MyD88 signaling pathway in 
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hepatocytes and induces an inflammatory response in the 
infusion of free fatty acids (FFA) or a high-fat diet.33 (Fig. 
3) Additionally, extracellular HMGB1 stimulates the expres-
sion of inflammatory mediators (TNF-α and IL-6) via the 
RAGE/p-JNK/p-ERK signaling axis, exacerbating hepatic in-
flammation and insulin resistance.141 Therefore, extracellu-
lar HMGB1 serves as a DAMP and regulates innate immune 
signaling pathways, promoting the transition from NAFLD 
to NASH. Suppression of HMGB1 release from hepatocytes 
or treatment with HMGB1-neutralizing antibodies can miti-
gate liver damage.142 Conversely, the intracellular function 
of HMGB1 in the development of NAFLD has emerged as a 
major focus of recent studies. Lin et al. demonstrated that 
hepatocyte-specific HMGB1 (HC-HMGB1) is crucial in main-
taining endoplasmic reticulum (ER) homeostasis and pre-
venting FFA-induced liver damage (Fig. 3). Compared with 
wild-type mice, HC-HMGB1-knockout (−/−) mice exhibited 
reduced expression of β-oxidation genes and increased ER 
stress markers in the liver, resulting in increased lipid ac-
cumulation and cell injury.143 Nuclear HMGB1 is a potent in-
hibitor of liver lipogenesis. By specifically deleting the HMGB1 
gene in hepatocytes, nuclear HMGB1 effectively inhibits the 
activities of the LXRα/PPARγ axis, preventing the develop-
ment of liver steatosis (Fig. 3).144 This finding suggests that 
HMGB1 might detach from chromatin in response to signals 
from the microenvironment, potentially influencing metabolic 

processes. Moreover, a novel HMGB1-mediated autophagy 
pathway has been reported to be involved in p53 regulation 
in NAFLD.145 Functional silencing of p53 promotes the trans-
location of HMGB1 from the nucleus to the cytoplasm. Once 
in the cytoplasm, HMGB1 triggers autophagy in hepatocytes 
by activating Beclin-1, facilitating lipid degradation. Although 
the precise mechanisms by which hepatocellular HMGB1 reg-
ulates ER stress and lipid degradation remain unclear, these 
studies offer innovative insights into potential strategies for 
preventing the onset of NAFLD. These findings provide new 
insights for the clinical treatment of NAFLD, suggesting that 
HMGB1 acts as an alarming signal and plays a pivotal role in 
lipid metabolism.

HMGB1 in ALD

HMGB1 has been successfully implicated in ALD through 
various processes, including oxidative stress, mitochondrial 
dysfunction, inflammatory responses, disruption of lipid me-
tabolism, and exposure to endotoxins, all of which are con-
sequences of excessive alcohol consumption.146 Clinical stud-
ies have confirmed that circulatory HMGB1 levels in patients 
with ALD are significantly elevated, serving as a biomarker 
to predict the clinical outcomes of alcoholic steatohepatitis.10 
As the disease progresses, liver tissue biopsies of patients 
with ALD show increased translocation of HMGB1 from the 

Fig. 3.  Roles of nuclear and extracellular HMGB1 in the pathogenesis of NAFLD. Functional silencing of p53 promotes HMGB1 nucleocytoplasmic translocation. 
Then, HMGB1 triggers autophagy in hepatocytes by activating Beclin-1, facilitating lipid degradation. Nuclear HMGB1 also inhibits the LXRα/PPARγ axis, preventing liver 
steatosis. HC-HMGB1 can inhibit ER stress and prevent FFA β-oxidation. Conversely, extracellular HMGB1 stimulates the expression of TNF-α and IL-6 via the TLR4/
MyD88 and RAGE/p-JNK/p-ERK signaling pathways. ↑, increase; ↓, decrease; BCL1, Beclin-1; ER, endoplasmic reticulum; FFA, free fatty acids; HMGB1, high-mobility 
group box-1; HC-HMGB1, hepatocyte-specific HMGB1; IL, interleukin; pJNK, phosphorylation of c-Jun N-terminal kinase; NAFLD, non-alcoholic fatty liver disease; 
NASH, nonalcoholic steatohepatitis; RAGE, receptor for advanced glycation end products; TLR, toll-like receptor; TNF, tumor necrosis factor.
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nucleus to the cytoplasm.147 The regulatory mechanisms of 
HMGB1 release are closely associated with PTMs, including 
acetylation, phosphorylation, and oxidative modifications. 
Further research revealed that genetic ablation of HMGB1 
protects against alcoholic liver damage in mice, underscor-
ing the deleterious impact of HMGB1 on the progression of 
ALD.71 Moreover, HMGB1 plays a critical role in reducing ER 
stress in hepatocytes by promoting liver inflammation and 
apoptosis, which are crucial factors in the development of 
alcoholic steatohepatitis.148 HSC activation is reportedly a 
major contributor to liver fibrosis. Previous studies demon-
strated that HMGB1 is released from hepatic parenchymal 
cells upon ethanol exposure. This release promotes the mi-
gration of HSCs and LSECs to the site of liver injury, contrib-
uting to the development of liver fibrosis.149 Xie et al. found 
that inhibiting autophagy could reverse alcohol-induced HSC 
activation and alleviate alcohol-induced liver injury in ALF 
mice.150 They also identified the long non-coding RNA XIST 
as a competitive endogenous RNA for miR-29b, promoting 
HMGB1 cytoplasmic expression and inducing autophagy and 
HSC activation.151

Recent studies have investigated the effects of HMGB1 
regulators or inhibitors on ALD. SIRT1 reportedly plays a cru-
cial role in the negative regulation of HMGB1 in ALD. The 
administration of SIRT1 agonists has been shown to effec-
tively suppress HMGB1 acetylation and release in hepatic tis-
sue, thereby ameliorating liver injury associated with ALD.56 
BRD4 activates inflammatory responses in ALD via the 
BRD4/HMGB1 signaling pathway. Salvianolic acid A inhibits 
this pathway by reducing BRD4 expression and preventing 
HMGB1 release, showing promise for improving ethanol-in-
duced hepatic inflammation, suggesting salvianolic acid A as 
a potential treatment for ALD.152 Furthermore, digitoflavone 
can be used to treat ALD by inhibiting the HMGB1/TLR4 axis, 
reducing ethanol-induced inflammation, decreasing lipid pro-
duction, and increasing lipid oxidation, thereby mitigating liv-
er damage.153 However, these findings are limited to animal 
studies, underscoring the need for clinical trials to evaluate 
the effectiveness and safety of HMGB1 inhibitors in patients 
with ALD and provide crucial empirical data for their clinical 
application.

HMGB1 in liver fibrosis
Liver fibrosis is a multifaceted pathological process signifi-
cantly influenced by inflammation.154 HMGB1 is a classical 
pro-inflammatory factor that plays a crucial role in HSC ac-
tivation and extracellular matrix protein production.155,156 
HMGB1 expression in the liver is associated with the stage 
of fibrosis in individuals with hepatitis, primary biliary cir-
rhosis, and ALD.38 Moreover, a prospective cohort study has 
demonstrated a potential correlation between elevated se-
rum HMGB1 levels and decreased survival rates in patients 
with cirrhosis complicated by acute kidney injury.157 Recent 
studies have focused on elucidating the specific mechanisms 
by which HMGB1 contributes to liver fibrosis. HMGB1 in-
teracts with RAGE or TLR4 to activate a cascade of signal-
ing pathways, including NF-κB/p65, MAPK, PI3K/Akt, and 
pMEK1/2/pERK1/2/pc-Jun. It also stimulates the activation 
and proliferation of HSCs, promoting the progression of fibro-
sis.62,158,159 Additionally, HMGB1 can stimulate the genera-
tion of pro-inflammatory cytokines (such as IL-6, TNF-α, and 
IL-1), aggravating intrahepatic inflammation and accelerat-
ing fibrosis progression.38,62,160,161

IHMGB1 consists of two boxes: the B box, which promotes 
inflammation, and the A box, which inhibits TLR signaling and 
limits inflammatory responses.162,163 Based on the unique 
structural attributes of HMGB1, studies have revealed a pep-

tide derived from the A box that can reduce fibrotic lesions 
following liver injury. Furthermore, this HMGB1 peptide pro-
motes macrophage polarization towards an anti-inflammato-
ry profile, offering promising therapeutic benefits for treating 
liver fibrosis.164 He et al. recently proposed an innovative 
pathogenic mechanism involving HMGB1 in the progression 
of HBV-induced liver fibrosis.165 Their findings demonstrate 
that HMGB1 serves as a critical mediator of macrophage 
NLRP3 inflammasome activation. Additionally, epigallocate-
chin-3-gallate has been shown to promote the cytoplasmic 
autophagic degradation of HMGB1, reducing extracellular 
HMGB1 levels, inhibiting macrophage inflammatory complex 
activation, and improving liver tissue damage. However, the 
molecular mechanisms underlying how epigallocatechin-
3-gallate inhibits macrophage NLRP3 activation remain un-
clear. Future studies should focus on identifying precise tar-
gets and methods to improve clinical interventions.

Another highly homologous protein, HMGB2, has been im-
plicated in the pathogenesis of liver fibrosis and cirrhosis. 
Serum HMGB2 levels are significantly elevated in patients 
with liver fibrosis and cirrhosis. Genetic ablation of HMGB2 
in vivo protects against CCl4-induced liver fibrosis owing to 
HSC inactivation, suggesting that HMGB2 could be a promis-
ing target for preventing the development of liver fibrosis.166

HMGB1 in HCC
The development of HCC is intricately associated with a pro-
cess involving chronic cell death, inflammation, fibrosis, and 
repeated repair and regeneration responses.167 HMGB1 is 
vital in the initiation and advancement of HCC. Multiple clini-
cal studies have revealed that HMGB1 levels in the circula-
tion and tumor tissues of patients with HCC are significantly 
elevated. Moreover, the increased presence of HMGB1 is 
strongly associated with tumor size, Edmondson grade, and 
tumor-node-metastasis staging, underscoring a direct asso-
ciation between elevated HMGB1 expression and unfavorable 
prognosis.66,168,169 The role of HMGB1 in HCC is multifaceted 
and paradoxical owing to its distinct intracellular and extra-
cellular localization.

HMGB1 promotes hepatocarcinogenesis: Liver-specif-
ic HMGB1 deficiency reduces HCC progression in CLD. Its de-
letion leads to reduced dendritic cells in tumors, suggesting a 
pivotal role in linking hepatocyte death to ductular reactions 
and hepatocarcinogenesis in CLD.170 Athavale et al. reported 
that mice with impaired Hippo signaling pathways showed 
significant reductions in YAP activity, inflammation, fibrosis, 
and HCC burden after HMGB1 deletion. HMGB1-deficient 
mice displayed severe abnormalities in their intrahepatic bile 
ducts and developed hyperbilirubinemia. This implies that 
HMGB1 may contribute to the development of HCC and plays 
a role in maintaining the normal function of intrahepatic bile 
ducts under Hippo signaling deficiency.171 Researchers re-
cently proposed a regulatory role for HMGB1 in HBV-related 
early-stage HCC.172 They suggested that elevated HMGB1 
mRNA levels upregulate RICTOR mRNA expression by com-
petitively binding to the miR-200 family. This HMGB1-medi-
ated RNA-RNA crosstalk promotes glutamine metabolism in 
tumor cells, enhancing their stem-like properties and tumori-
genesis via epigenetic modifications. Moreover, this crosstalk 
may affect the effectiveness of immunotherapy by increasing 
programmed death-ligand 1 (PD-L1) expression and PD-L1+ 
exosome activity. These findings provide new insights into 
potential targets for early-stage HCC treatment with anti-
PD-L1 therapy. Cao et al. suggested that liver infection with 
H. hepaticus may influence the development of precancerous 
liver lesions primarily by promoting HMGB1 activation and 
accumulation.
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HMGB1 promotes tumor proliferation and metas-
tasis: RAGE is a key receptor for HMGB1, which regulates 
HCC proliferation and metastasis. The HMGB1/NF-κB sign-
aling pathways, such as NF-κB/Ras-MAPK, NF-κB/STAT, and 
NF-κB/PI3K/Akt, are involved in modulating the expression 
of crucial signaling molecules and cytokines closely associ-
ated with cancer progression.65,173–176 For example, HMGB1 
stimulates increased KLF7 expression in tumor cells via the 
TLR4/RAGE-PI3K-AKT-NF-κB pathway. This causes the es-
tablishment of an HMGB1-KLF7-TLR4/PTK2 positive feed-
back loop, facilitating the development of HCC.177 Autophagy 
significantly impacts the aggressive proliferation of tumors. 
A study revealed that HMGB1 serves as a crucial facilitator 
driving the advancement of HCC in autophagy-deficient liv-
ers.170 HMGB1 is released through paracrine signaling and 
interacts with RAGE receptors on macrophages or ductal 
cells, stimulating the growth of liver tumors and modifying 
the TME.178 In addition to conventional receptors, Pu et al. 
revealed that valosin-containing protein (VCP), a well-known 
molecule implicated in tumor metastasis and prognosis, sig-
nificantly influences the advancement of HCC.179 The interac-
tion between the D1 domain of VCP and the A box of HMGB1 
activates the PI3K/AKT/mTOR signaling pathway, enhancing 
the proliferation, migration, and invasion abilities of tumor 
cells. This demonstrates the pivotal involvement of HMGB1 
in the VCP-driven progression of HCC, underscoring the po-
tential of VCP and HMGB1 as promising therapeutic targets 
for HCC treatment.

HMGB1 regulates the TME: Alterations in the TME are 
pivotal in the advancement of HCC,180 with HMGB1 serving 
a critical role in enhancing the production of inflammatory 
factors,181 stimulating angiogenesis,182,183 and facilitating 
immune evasion.184,185 In hypoxic environments, HMGB1 ex-
pression is significantly increased in HCC, resulting in the in-
filtration of macrophages and their repolarization to promote 
IL-6 expression, which enhances the invasiveness and me-
tastasis of tumor cells. Moreover, extracellular HMGB1 acts as 
a chemoattractant for leukocytes and a pro-inflammatory cy-
tokine, prompting recruited leukocytes and resident immune 
cells to release TNF-α, IL-1, IL-6, and other cytokines.181 
Additionally, HMGB1 expression is increased by hepatitis B 
virus-encoded X protein activation, which plays a crucial role 
in the development of HBV-related liver cancer. HMGB1 mod-
ulates the IL-6/STAT3/miR-34a signaling pathway, facilitating 
epithelial-mesenchymal transition and tumor angiogenesis in 
HBV-related liver cancer. Therefore, HMGB1 may serve as a 
potential target for invasion and venous metastasis of HBV-
related liver cancers.182 Notably, mitochondrial transfer is 
a recently identified dynamic phenomenon associated with 
various human diseases, including cancer and cardiovascular 
diseases.186 Jing et al. indicated that extracellular HMGB1 
promotes mitochondrial transfer to influence the TME and 
the progression of HCC under hypoxic conditions.67 HMGB1 
enhances the expression of RHOT1 by boosting the activ-
ity of the NF-Y complex, regulating the recruitment of RAC1 
to the cell membrane. This process facilitates mitochondrial 
transfer and promotes the migration and metastasis of tumor 
cells. Furthermore, elevated levels of HMGB1, RHOT1, and 
RAC1 in patients with HCC are associated with shorter overall 
survival. These findings demonstrate the complex interplay 
between hypoxia, HMGB1, and mitochondrial transfer dur-
ing the progression of HCC, highlighting potential targets for 
therapeutic interventions.

Therapeutic potential of HMGB1
As discussed previously, HMGB1 is vital in the pathogenesis 

of acute and chronic liver diseases.187 Specific strategies 
have been employed to target HMGB1 in treating these con-
ditions, including inhibiting its release or impeding the func-
tion of extracellular HMGB1.8,188

HMGB1 antagonists effectively block excessive extracel-
lular HMGB1 and alleviate inflammatory liver diseases.189 An 
anti-HMGB1 monoclonal antibody reportedly protects ani-
mals against lethal sepsis-induced ALI by inhibiting HMGB1 
endocytosis. These therapeutic approaches show promise for 
regulating HMGB1-mediated immune activation.190 Further-
more, various chemical molecules and HMGB1-based pep-
tides can bind directly to HMGB1 and inhibit its cytoplasmic 
translocation. Certain Chinese herbal medicines, such as 
curcumin, glycyrrhizin, and salvianic acid A, exhibit hepato-
protective effects by inhibiting the extracellular release of 
HMGB1 to alleviate liver inflammation.152,158,191 Moreover, 
the HMGB1 peptide synthesized from the A box can drive 
macrophages toward an anti-inflammatory state, attenuat-
ing the advancement of liver fibrosis and showing promise 
as a therapeutic agent for cirrhosis.164 Similarly, the pep-
tide antagonist P5779 protects against experimental HIRI, 
APAP-induced liver toxicity, and sepsis lethality through the 
HMGB1/TLR4 signaling pathway.192 Notably, HMGB1 is a cru-
cial therapeutic target in HCC.193 Multiple basic studies have 
shown that microRNAs (miR-320a, miR-325, miR-505, and 
miR-129-2) and long non-coding RNA (MIR22HG) are in-
volved in the pathogenesis of HCC by negatively modulating 
the post-translational expression of HMGB1 in hepatocytes. 
This regulation suppresses tumor cell proliferation, invasion, 
and metastasis.194–197

Furthermore, some HMGB1 antagonists can effectively 
inhibit the transduction of inflammatory signaling pathways 
associated with HMGB1, thereby reducing its pro-inflamma-
tory effects.102 Digitoflavone has demonstrated potential 
in managing ALD by inhibiting the HMGB1-TLR4 signaling 
pathway.153 In APAP-induced ALF, heparan sulfate exhibits 
a specific affinity for HMGB1, disrupting the HMGB1/RAGE 
axis and demonstrating notable hepatoprotective proper-
ties.130 The protective effects of berberine-loaded nanostruc-
tured lipid carriers and aucubin against HIRI are achieved 
through the inhibition of the HMGB1/TLR4/NF-κB inflamma-
tory signaling pathway, autophagy, and cell apoptosis.113,198 
A newly discovered RG-I pectin-like polysaccharide, YJ3A1, 
has shown potential in inactivating the HMGB1/TLR4/NF-κB 
and Akt signaling pathways, impeding the progression of 
NASH.199 Wang et al. found that the intravenous administra-
tion of exosomes derived from adipose-derived mesenchy-
mal stem cells could serve as a safe and effective cellular 
therapy targeting HMGB1 for HIRI treatment. This approach 
effectively suppresses the release of HMGB1 by obstructing 
the TLR4/MyD88/NF-κB/HMGB1 axis, mitigating hepatocyte 
apoptosis and pyroptosis in a miniature pig model of HIRI.200

HMGB1 is crucial in dampening inflammatory responses, 
safeguarding liver cells, and impeding the advancement of 
pathological processes by promoting excessive release and 
modulating receptor signaling pathways. Although there are 
challenges to its clinical application, ongoing studies on har-
nessing HMGB1 as a therapeutic target hold significant prom-
ise for effectively treating liver diseases.

Conclusions and future perspectives
Existing studies have confirmed that HMGB1 levels are sig-
nificantly elevated in the serum of patients with various liver 
diseases, closely correlating with disease progression, the 
occurrence of complications, and clinical prognosis. These 
findings provide a crucial foundation for positioning HMGB1 
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as a diagnostic and therapeutic target in liver diseases. Fur-
thermore, it is promising that many effective therapeutic 
drugs targeting HMGB1 in liver disease have been developed. 
A notable example is traditional Chinese medicine, includ-
ing curcumin, glycyrrhizin, and salvianic acid A, which exhibit 
hepatoprotective effects by inhibiting the extracellular release 
of HMGB1. However, significant challenges remain in trans-
lating these findings into clinical interventions. On one hand, 
most of these clinical discoveries are based on retrospective 
studies from single centers, making it difficult to extrapolate 
the conclusions. Large-scale, multicenter prospective stud-
ies of HMGB1 in liver diseases are needed for validation. On 
the other hand, HMGB1 antagonists are still in the preclinical 
stage. Research on drugs targeting HMGB1 predominantly 
involves animal subjects, with a lack of studies involving hu-
man patient samples. Clinical trials are essential to assess 
the safety, tolerability, and efficacy of these drugs. Therefore, 
clinical practice guidelines should be updated, based on the 
effectiveness and safety of new therapies, to guide physi-
cians in their treatment decisions.

HMGB1 plays a vital role in the pathogenesis of liver dis-
eases; however, its molecular mechanisms of action remain 
unclear. Understanding the intricate relationship between 
HMGB1 and disease progression, treatment response, and 
clinical prognosis is particularly essential. Moreover, the dif-
ferences in the signaling pathways involving HMGB1 in vari-
ous hepatic cells, and how these pathways mediate crosstalk 
between cells, require further exploration. PTMs can modu-
late HMGB1 functions in liver pathophysiology, and targeting 
PTMs may offer new therapeutic strategies for the treatment 
of liver diseases. HMGB1 lactylation represents a highly valu-
able and challenging research direction. Notably, the specific 
molecular mechanisms of PTMs—including the writers and 
erasers, modification sites, and reaction kinetics—remain un-
clear. The precise signaling pathways and functions of HMGB1 
lactylation in regulating the development of liver diseases 
require further study. Moreover, it remains to be determined 
whether other liver cells, apart from hepatocytes, can also 
undergo HMGB1 lactylation. Addressing these challenges will 
provide new insights into the pathogenesis and treatment of 
liver diseases.
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